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Packing Segments in a Simple Polygon is APX-hard

Heuna Kim *

Abstract For a given set of line segments and a poly-
gon P in the plane, we want to find the maximum
number of segments that can be disjointly embedded
by translation into P. We show APX-hardness and
discuss variations.

This problem can be considered in two respects : as
a variant of the Kakeya problem and as a maximum-
packing problem for line segments.

1 Introduction

The Kakeya Problem. The famous Kakeya prob-
lem asks for the region R in the plane with minimum-
area such that a unit-length line segment can continu-
ously rotate by 7 within R. One variant of the Kakeya
problem relaxes the continuous rotation and tries to
find a planar region R’ with the minimum area such
that translates of all the unit-length line segments in
the plane can be placed in R'. The segments may
intersect. This region R’ is called a minimum area
translation cover.

Pal [5, 4] solved these two problems, and many

other interesting variations about the minimum-area
translation cover have been studied (refer [3, 6] for
surveys).
A Minimum-Container Problem and a 3-
approximation Algorithm. Finding a minimum-
area translation cover can be considered as a
minimum-container problem if we want to disjointly
embed line segments. The following question arises
naturally in this context; given a set of line segments
S, what is the minimum-area convex body R such
that translates of segments in S can be disjointly em-
bedded in R?

We suspect this problem is computationally in-
tractable, but not much is known about this problem
except for a 3-approximation algorithm by Sang Won
Bae (by private communication).

The 3-approximation algorithm is as follows. Us-
ing the algorithm by Ahn et al. [1], we compute the
triangle T" which is the minimum-area convex transla-
tion cover of the given set of line segments S. Then,
we construct a convex trapezoid @ as follows. First
translate two copies 11,75 of T so that one side of
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Figure 1: The minimum-area convex translation cover
T and the trapezoid Q = T U T, U T;.

each copy is aligned on a line and 7T} and 75 share
one vertex v. We obtain the third copy 73 by rotat-
ing T by 7 and translate it so that the three copies
form the trapezoid Q = T1 U T U T3, see Figure 1.

Then all segments in S can be disjointly embedded
in Q; every segment s in S can be translated in a way
that one of its endpoints lies on v and s still lies inside
Q. Since the optimal area is at least the area of T,
the obtained trapezoid gives a 3-approximation.
Problem Definition and Summary of Results.
To solve a minimum-container problem it is natural to
consider its dual, that is, a maximum-packing prob-
lem. We consider the maximum-packing problem in
this abstract. We show hardness results for simple
polygons and a simple approximation algorithm for
convex polygons.

As in [2], we define MAXSEGPACKd for a class R
of regions in R? as the following problem; given a
collection of (open) segments and a region R € R,
what is the maximum number of segments that can
be disjointly embedded in R by translation?

This problem is known to be NP-hard when R is a
convex 3-polytope of general regions in the plane [2].
We state the result for a convex 3-polytope.

Theorem 1 ([2]) MAXSEGPACK3 for a convex 3-
polytope is NP-hard.

We state the main results as the following theorem.

Theorem 2 MAXSEGPACK2 for a simple polygon
and a set of unit segments U is strongly NP-
complete. Also, approximating an optimal solution
of MAXSEGPACK2 for a simple polygon and a set of
unit segments with an approximation ratio 15/16 + ¢
is NP-hard for any ¢ > 0.

We could also find a simple approximation algo-
rithm.
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Theorem 3 There exists a k-approximation algo-
rithm for MAXSEGPACK2 for a convex k-gon.

By inspecting the proof from Theorem 1 in [2],
we could easily conclude NP-hardness for high-
dimensional cases.

We extend MAXSEGPACKd to the following prob-
lem MAXPACK(dg,dg) ; given a collection of (open)
dgs-simplices and region R in dgx-space, what is the
maximum number of simplices that can be disjointly
embedded in R by translation?

Theorem 4 MAXPACK(dg,dg) for a convex dy-
polytope is NP-hard for all dg > 3,dg > 1.

Remark. When a line segment s can be embedded in
some region R, we say s fits in R. Also, if a set of line
segments S can be disjointly embedded in R, we say
S can be packed in R.

We regard two line segments of the same lengths
and the same slopes as the same line segment since
if two line segments have the same lengths and the
same slopes we can overlap them completely by trans-
lation.

2 Proof of Theorem 2

We first show that MAXSEGPACK2 for a simple poly-
gon P is in NP and then show that it is NP-hard. A
natural candidate for a certificate of this problem is
the set of the coordinates of the endpoints of the line
segments. We can check whether the line segments
are inside a given simple polygon P and whether they
have no intersections by using linear inequalities.

We claim that those coordinates and the coefficients
of linear inequalities can be described with polynomial
precision. To this end, it is enough to show that the
coordinates correspond to a feasible solution of con-
junctions and disjunctions of a polynomial number of
linear inequalities with coefficients of bounded preci-
sion.

To specify the linear inequalities, we first triangu-
late the given simple polygon arbitrarily. Three in-
equalities suffice to describe if each endpoint lies in
one of the triangles. This gives us 6n inequalities,
where n specifies the number of line segments we want
to pack. A pair of line segments is crossing free if and
only if at least one of them is completely to the left or
completely to the right of the supporting line of the
other. Since two linear inequalities suffice to describe
if a line segment is to the left of another, this gives
us 2('21) linear inequalities. Lastly, we need to specify
two equalities per line segment to define the slope and
the length of line segments (relative positions of two
endpoints). In total, this gives us 6n + 2(;) inequal-
ities and 2n equalities with coefficients of bounded
precision. Hence, we can verify any certificate in a
polynomial time.

Before describing the reduction from MAX-3-SAT,
we state the following two lemmas for constructing
gadgets. Lemma 5 will be used for the clause gadgets
and Lemma 6 for the variable gadgets.

Figure 2: Four segments and a polygon such that ex-
actly one of the segments fits but no two of them can
be packed.

Lemma 5 Let S be a set of unit-length line segments
with distinct slopes. We construct a convex polygon
Q = Q(S) with the following properties:

1. any segment s € S fits in Q;

2. no two segments in S can be packed in Q; and

3. no unit-length line segment s ¢ S fits in Q.

Proof. Translate all the segments of S so that their
midpoints lie at the origin. Now define Q(S) as the
convex hull of all those segments; see Figure 2 for an
illustration.

The diameter of @ is 1 and the diameter is attained
only for pairs of opposite extreme points of Q). There-
fore, a unit-length line segment s fits in @ if and only
if s can be translated in a way that its endpoints lie at
opposite extreme points of (). This implies the first
and the third property.

Fach segment s that fits in @ has a unique position
in @ and this unique position always goes through the
origin. Thus, no two segments of unit length can be
packed in ). This implies the second property. g

Figure 3: Sets S and S’ and the convex polygon
R(S,S") constructed from them.

Lemma 6 Let S be a set of unit length line segments
such that the angle with the x-axis is within £0.1
radian, and let S’ be a set of unit-length line segments
such that the angle with the y-axis is within £0.1
radiant.

There exists a convex polygon R = R(S,S’) with
the following properties:
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[

segments in S can be packed in R;

the set S’ can be packed in R;

3. no two segments s € S and s’ € S’ can be packed
in R; and

4. no unit segment s ¢ S U S’ fits into R.

o

Proof. Translate the left endpoint of every line seg-
ment s € S to the point (—0.5,0) and the bottom
endpoint of every line segment s’ € S’ to the point
(0,—0.5). The convex hull of those segments define
R = R(S,95’). See Figure 3.

The diameter of Q is 1 and the diameter is attained
only for pairs of points (p, q) such that either 1) p =
(—0.5,0) and ¢ is one of right extreme points (marked
blue in Figure 3). or 2) p = (0,—0.5) and ¢ is one of
top extreme points (marked green in Figure 3). These
are exactly the endpoints of segments in S U S’ after
we moved the segments of S. By the same argument
as in Lemma 5, any unit-length line segment s fits in
R if and only if s € SUS’. Each segment s that fits in
R has a unique position p(s) in R. Observe that p(s1)
and p(s2) are disjoint if either s1,$5 € S or 51,82 € 5’
and p(s1) and p(s2) intersect otherwise. Thus, any
two segments s; and ss can be packed in R if and
only if either si;,s5 € S or s1,s590 € S’. Altogether
these arguments imply the above four properties. O

Given a 3-CNF formula ¢ with m clauses and n
variables, we construct a simple polygon P and a
set of 2m unit segments U that satisfy the following
property; there exists an assignments that satisfies ¢
clauses of ¢ if and only if ¢ + m elements of U can be
disjointly embedded in P.

We begin by defining the line segments. Then we
describe clause and variable polygons and finally we
describe how to join everything to one big polygon.

For each clause C;, i = 1,...,m of ¢ we construct
two unit segments s, and s;. The line segment s;
forms an angle a; = 5i— with the z-axis and s/
forms an angle o = 155~ with the y-axis. I Note
that all s;’s can be regarded as slight perturbations
of a horizontal unit segment, and all s, as a slight
perturbation of a vertical unit segment.

For each clause C; we define the clause polygon

Qi = Q({si, si})

_t
100m

according to Lemma 5.
For each variable x; with j = 1,...,n, we define

S; = {s; | the literal z; is contained in C; } and

8% = { s} | the literal T; is contained in C; }.

L To compute the endpoints of the segments we need sine and
cosine operations, but it is not necessary since the construction
does not depend on the exact values of the angles. We also
could define the angles as rational values.
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Figure 4: Joining polygons together without new seg-
ments fitting in.

For each variable z; we define the variable polygon
Rj = R(Sj7 S]/)

according to Lemma 6. Note that each segment s € U
fits in at most four polygons: one clause polygon and
at most three variable polygons.

The polygon P is defined by joining all the polygons
Q1,---,Qm,R1,...,R,. In order to join these poly-
gons, add a narrow diagonal tunnel from one polygon
to the next; see Figure 4 for an illustration. Since
every segment in I/ is either almost horizontal or ver-
tical, none of them fits into the tunnel.

It is clear that this construction can be done within
a polynomial time. For this polygon P and this set of
line segments U, we claim that there exists an assign-
ment that satisfies ¢ clauses of ¢ if and only if t +m
elements of U can be packed in P.

First suppose that we are given an assignment A
that satisfies t clauses of ¢. We will describe how
to embed t + m segments in the polygon P. There
are some segments that fit in P not uniquely but in
several possible variable polygons. In this case, we
make an arbitrary choice. If z; is true in A, place
segments in S; in the variable polygon R; and if z;
is false in A, place segments in S]’- in R; unless the
segments are already placed in some other variable
polygon. We also place all remaining segments into
their corresponding clause polygon Q); if possible.

If C; is satisfied by A, both segments s; and s are
placed in P for the following reason. Either s; or s} is
placed in R; for some j since at least one variable z;
in C; makes C; satisfied. We placed the other to Q);
unless it is already contained in a different variable
polygon.

Otherwise, only one of the segments s; or s fits in
P, since neither s; nor s} are contained in any variable
polygon R; and both segments cannot fit in @);. Since
t clauses are satisfied, the first case happens t times
and the second case appears m —t times. Hence, t+m
segments can be packed into P.

For the other direction, suppose t + m segments
in U can be packed in P. We assume this packing
is maximal. We define an assignment A by checking
which segments are placed in R;. If R; contains a
segment of S; then we set x; to true and otherwise
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we set z; to false. We can repeat the same argument
in the other direction. For each clause Cj, if s; and
s; are both packed, then either s; or s is in some Rj,
which implies that the clause C; is satisfied by the
variable ;. Otherwise, one of s; and s; is packed, but
none of s; and s} is placed in a variable polygon, and
this implies that C; cannot be satisfied by A. Then
2Xxng+ny=t+mand ng +ny = m where ng is
the number of satisfied clauses and n is the number
of non-satisfied clauses. Then the number of satisfied
clause in A is t. This shows the problem is NP-hard.

Finally we show that no approximation algorithm
exists with an approximation ratio 15/16 + € for any
€ > 0. Suppose there exists an approximation algo-
rithm for MAXSEGPACK2 for a simple polygon and a
set of unit length segments with an approximation ra-
tio 15/16 +¢/2 for some € > 0. By using the previous
construction for any CNF formula ¢ of m clauses, we
can find an assignment A that satisfies ¢ clauses where
Lm > 15/16+¢/2; that is, we have an approximation
algorithm for MAX-3-SAT with an approximation
ratio t/m > 7/8 + ¢.

Since there is no approximation algorithm for
MAX-3-SAT with the approximation ratio 7/8 + ¢
for any € > 0 unless P=NP, there exists no approx-
imation algorithm for MAXSEGPACK2 for a simple
polygon and a set of unit segments with an approxi-
mation ratio 15/16+¢/2 for any /2 > 0 unless P=NP.

3 Approximation Algorithm for a Convex k-gon

The following algorithm gives a k-approximation for
MAXSEGPACK?2 for a convex polygon.

Input: a set of line segments S; convex k-gon P

Output: 7 C S; a k-approximated solution

for all v € vertices of P do

Sy :={s € S : s can be placed on v inside P}
end for

return the largest set .S,

Any segment s € S that fits in P can be translated
so that one of endpoints of v is on a vertex of P and v
still lies in P. For each vertex v of P, all the elements
S, can be packed in P. Since

U s

p:vertices of P

is at least the optimal solution, the largest set .S, has
the cardinality at least 1/k of the optimal solution.

4 Hardness for d-space

Theorem 1 in [2] states MAXSEGPACKS for a convex
3-polytope is NP-hard; that is, MAXPACK(3, 1) is NP-
hard. In the proof, all line segments were constructed
in a way that they are uniquely embeddable in a
convex 3-polytope for the reduction. We can prove

= £

Figure 5: Visualization of constructing a pyramid, in
dimension three.

that MAXPACK(dk,dgs) for a convex dg-polytope is
NP-hard inductively by reducing (1) an instance of
MaxPACK(dg, 1) to an instance of MAXPACK(dg +
1,1) and (2) an instance of MAXPACK(dk,ds) to an
instance MAXPACK(dg + 1,ds + 1).

Let (K,S) be any instance of MAXPACK(dk,1)
where K is a convex dg-polytope and S a set of
line segments that can be uniquely embedded in
K. We construct K’ by taking a pyramid whose
base is K. Then K’ is convex (dx + 1)-polytope.
Then, (K’,S) is an instance of MAXPACK(dx + 1,1)
whose solution corresponds to a solution of (K, S) for
MAXPACK(dk, 1), since all line segments s € S can
be embedded in K uniquely and s cannot be embed-
ded in any smaller homothetic copies of K. This is
the reduction for (1), and the reduction for (2) is quite
similar; we replace s € S by the convex hull s’ of s
and the apex of K’. Therefore, MAXPACK(dk,dg) is
NP-hard for all dg > 3,dg > 1.
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