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Packing Segments in a Convex 3-Polytope is NP-hard

Michael Gene Dobbins∗ Heuna Kim†

Abstract

We show it is NP-hard to pack the maximum num-
ber of segments in a convex 3-dimensional polytope.
We show this packing problem is also NP-hard for
general polygonal regions in the plane. This problem
relates two streams of research, Kakeya set problems
and packing problems.

1 Introduction

1.1 The Kakeya Set Problem

A translation cover of a collection C of geometric ob-
jects is a region that contains some translate of each
object in C. Julius Pál showed that an equilateral
triangle of area 1/

√
3 is a minimum-area convex trans-

lation cover for all unit-length segments in the plane
[8].

A variant of this question had been posed by Soichi
Kakeya with the additional requirement that a unit-
length segment can be continuously rotated by [0, π]
inside the region and return to its initial position [5].
This problem was also resolved by Pál [7].

Many variations of this problem have been consid-
ered, and these have lead to some important applica-
tions in analysis. Terence Tao has given a nice self-
contained survey of several of these applications [10],
and more recently Izabella  Laba has given a more ex-
tensive survey [6].

A recent variation of these problems is to con-
sider arbitrary collections of segments instead of unit-
length segments. This has lead to an O(n log n) time
algorithm that constructs a minimum-area translation
cover of a given collection of n segments [1].

1.2 Motivation and Results

The following minimum-packaging problem is a nat-
ural extension of [1]. Given a collection of segments,
what is the minimum-area convex set containing a
disjoint translate of each segment? In contrast, we
suspect that this problem is intractable.

Our understanding of this minimum-packaging
problem may benefit from an understanding of the fol-
lowing analogous maximum-packing problem. Given
both a collection of segments and a region in Rd, what
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is the maximum number of segments that can be dis-
jointly embedded in the region by translation? We
call this the maximum segment-packing problem.

In this paper, we prove that the maximum segment-
packing problem is NP-hard in the following cases.

(I) When the region is restricted to being a convex
3-dimensional polytope.

(II) When the region is a general region in the
plane.

The proof of both cases will use similar arguments.
The complexity of the problem for convex polygonal
regions in the plane remains open.

2 Results

2.1 Problem Definition

MaxSegPackd for a class R of regions in Rd denotes
the following problem. Given a collection of segments
S and a region R ∈ R, what is the maximum number
of segments that can be disjointly embedded in R?

2.2 Case I

Theorem 1 MaxSegPack3 for convex polytopes is
NP-hard.

We proceed by reduction to a known NP-hard prob-
lem. It is well-known that finding the maximum in-
dependent set of vertices of a graph (MaxIndSet)
is NP-hard. Moreover, MaxIndSet restricted to a
bridgeless triangle-free cubic graph is still NP-hard
[11]. Given such a graph G, we will construct an in-
stance of MaxSegPack3 for convex polytopes. For
this we will use the following lemma.

Lemma 2 If G is a bridgeless triangle-free cubic
graph, then there exists a collection of lines L in R3

such that G is the incidence graph of L.

2.3 Construction of lines L

We denote the set of vertices in G as V (G) and the set
of edges in G as E(G). Let G be a bridgeless triangle-
free cubic graph. We will construct a collection L

consisting of a line `v for each vertex v ∈ V (G).
This can be done in the following way. First, since

G is bridgeless and cubic, it has a perfect matching
M ⊂ E(G) by Petersen’s theorem [9]. Now generate
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Figure 1: Contruction of P, X, and L from G.

a collection of planes P consisting of a plane Pe for
each edge of the matching e ∈M , and then generate a
collection of points X consisting of a point xf for each
remaining edge f 6∈ M such that the following holds.
The planes P are chosen to intersect generically. That
is, every two planes intersect in a line, every three
intersect in a point, and every four are disjoint. Each
edge f 6∈ M is adjacent to exactly two edges e1, e2
of the matching M (e1, e2 ∈ M), and the point xf
is chosen to be on the line Pe1 ∩ Pe2 . Each vertex
v is incident to exactly two edges f1, f2 not of the
matching M (f1, f2 6∈ M), and we let `v be the line
spanning these points xf1 , xf2 ∈ `v. The points X

are chosen so that the lines L intersect generically.
That is, a pair of lines intersects if and only if, they
are constrained to be in the same plane or they are
constrained to contain the same point for almost every
choice of P and X.

2.4 Proof of Lemma 2

It remains to be seen that the constraints imposed on
L by the above construction imply that a pair of lines
intersect if and only if they correspond to adjacent
vertices of G.

For any two adjacent vertices {u, v} = g ∈ E(G),
we have immediately that `u and `v intersect. If

e2

e3

e1

u

v

Figure 2: If e1, e2, e2 ∈ M , then `u and `v would
intersect.

g ∈ M , then we have `u, `v ⊂ Pg, so generically they
intersect. Otherwise, g 6∈M implies xg ∈ `u, `v.

For the other direction, consider an edge e ∈ M
and a vertex v that is not incident to e. We claim
that the corresponding line `v is not contained in the
corresponding plane Pe. Suppose this were not the
case. Let f1, f2 ∈ E(G)\M be the two edges incident
to v not of the matching M . Now xf1 and xf2 would
both generically be in Pe, which implies f1 and f2 are
both adjacent to e. But this is impossible, since G is
triangle-free. Hence, the claim holds.

To see how the lines L generically intersect, fix all
objects among P and X except one point x ∈ X, which
is allowed to vary. Consider a line ` ∈ L depending
on x, and let x′ ∈ X be the other point that ` depends
on. For any line `′ ∈ L that is not in the same plane
as ` and does not depend on either x or x′, there is
only one choice of x that makes ` intersect `′. Hence
generically, ` and `′ are disjoint, and likewise any pair
of lines in L corresponding to non-adjacent vertices of
G is disjoint.

2.5 Reduction from the Maximum Independent
Set Problem

Now, we will construct a polytope K and a collection
of segments S such that each segment is uniquely em-
bedded in K by translation and G is the intersection
graph of S. If we can solve MaxSegPack3 for convex
polytopes and wish to solve MaxIndSet for a given
graph G, we first construct such a pair (K, S), then a
maximum packing of segments in K will correspond
to a maximum independent set of vertices of G.

Let L be the collection of lines generated from G
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Figure 3: Choosing a sufficiently large sphere ensures
that the vertices of each segment in S will be extreem
points of K in the direction of that segment.

as in Section 2.3, and let r > 0 be the maximum
distance from the origin to any line in L. For each
v ∈ V (G), let Cv be the solid infinite cylinder with
axis parallel to `v passing through the origin and with
radius r. Let B a closed ball and S be the boundary
sphere of B, such that B centered at the origin with
radius sufficiently large so that there is no triple in-
tersection, Cu ∩ Cv ∩ S = ∅ for all u, v ∈ V (G). Let
S = {` ∩ S : ` ∈ L} and K = conv(

⋃
S). See Figure 3.

2.6 Proof of Theorem 1

To prove that the reduction is correct, we must show
two things. First, the pair (K, S) can be constructed
in polynomial time from the graph G. Second, the
pair does indeed have the properties claimed in Sec-
tion 2.5.

First we must find a perfect matching M ⊂ E(G),
and this can be done in polynomial time by Ed-
monds’s matching algorithm [4].

Next we must generate a collection of planes that
intersect generically. For this, we may choose planes
defined by linear equations with coefficients on the
moment curve, Pi = {p :

〈
(i, i2, i3), p

〉
= 1} for i =

1, 2, . . . , |M |.
We can then find a polynomial number of points on

the intersection of two planes defined in polynomial
time, and this is enough to guarantee some generic
choice for X, which also gives us L.

Then to compute S, we must compute the maxi-
mum distance from the origin to each line, and the

minimum angle between pairs of lines. Finally, we
can compute the pair (K, S), and this can all be done
in polynomial time.

Now, we will show the claimed properties of the
construction; that is, (1) each segment in S is uniquely
embedded in K by translation, and (2) G is still an
intersection graph of S.

For (1), consider a segment sv ∈ S corresponding
to a line lv ∈ L and a vertex y of sv. Let Py be
the plane that is perpendicular to lv and contains the
vertex y. We claim Py is a supporting plane of K and
Py ∩K = y.

Let H be the closed half-space bounded by Py

that does not contain the center of S. Observe that
H ∩ sy = y. Any point in H∩S is at most as far from
the axis of Cv as the point y. Therefore, H ∩S ⊂ Cv.
By construction, a vertex of any other segment su is
in Cu ∩ S. The condition Cu ∩ Cv ∩ S = ∅ implies
that the set Cu ∩ S is disjoint from Cv, and therefore
Cu ∩ S is disjoint from H ∩ S as well, so a vertex of
su cannot be not in H. Hence, su is disjoint from H.
Excluding the point y, the segments in S are entirely
on one side of Py, so Py is a supporting plane of K
and Py ∩K = y.

Now consider a translate t of sv that is in K. The
segment sv has two such supporting planes and t must
be in the space between this parallel pair of support-
ing planes, since K is between these planes. There-
fore, t must intersect each plane. Furthermore, t must
intersect each supporting plane at a point in K. Since
these supporting planes only intersect K at a single
point each, there can be only one possible translate,
namely t = sv itself.

Remark. In particular, for a segment sv ∈ S with
end points y, z, and for any other point x ∈ K, x
is away from the plane Py, which is perpendicular to
sv = yz, and on the same side of Py as z. This implies
that the angle between xy and yz is acute. For sv to
translate in K it would have to translate away from
Py, while similarly translating away from Pz as well.

For (2), we only need to show all the intersections
of pairs of lines are inside K, since the correspond-
ing segments are uniquely embedded. Let lv, lu be
an intersecting pair of lines and Cv, Cu be the cor-
responding cylinders defined as in Section 2.5. Since
Cv ∩ Cu ∩ S = ∅ and Cv ∩ Cu is convex and contains
the center of S, Cv ∩ Cu is contained in B. Conse-
quently, lv ∩ lu ⊂ Cv ∩ Cu is also contained in B. In
particular, lv ∩ lu is in sv = lv ∩ B, which is in K.
Therefore, lv ∩ lu is inside K.

Finally, since the sets of segments among S that
can be packed in K correspond to the independent
sets of G, MaxSegPack3 for convex polytopes is at
least within a polynomial factor as hard as MaxInd-
Set for bridgeless triangle-free cubic graphs. Thus,
MaxSegPack3 for convex polytopes is NP-hard.
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2.7 Case II

Theorem 3 MaxSegPack2 for general polygonal
regions is NP-hard

Proof. Again this is by reduction to MaxIndSet.
MaxIndSet restricted to planar graphs in addition
to all the restrictions in the proof of Theorem 1 is still
NP-hard [11]. Any triangle-free planar graph can be
realized in polynomial time as the intersection graph
of segments S in the plane [3]. The reduction then
follows by packing the maximum number of segments
among S in the region

⋃
S. �

3 Conclusion

Many related questions remain open. Theorem 1
only provides a lower bound on the complexity of
MaxSegPack3 for convex polytopes. It remains
to provide an upper bound on complexity. It
also remains to provide an approximation algorithm,
through even a constant factor approximation algo-
rithm may be too much to hope for [2]. MaxInd-
Set is in general also known to be W [1]-hard, but
W [1]-hardness for this problem also still remains open
because we used only bridgeless triangle-free cubic
graphs for the reduction.

This can all be said for MaxSegPack2 for general
polygonal regions as well, and we do not yet know of
any notable bounds on the complexity of MaxSeg-
Pack2 for convex polygonal regions.

We may also consider the decision version of these
packing problems. Given a collection of segments,
a region in Rd, and a value n, can at least n of
the segments be disjointly embedded in the given re-
gion. While this problem has lower complexity than
MaxSegPackd, we know from Theorem 1 that there
cannot be a polynomial time algorithm for convex
polytopes, and likewise by Theorem 3 for general
polygonal regions.

The minimum segment-packaging problem that we
saw in the introduction also remains open, both to
determine its complexity and to provide an efficient
algorithm. Approximation algorithms would also be
of interest here, especially if the minimum-packaging
problem is intractable. In an unpublished communi-
cation Otfried Cheong has given a polynomial time
3-approximation algorithm.

We may also consider the corresponding decision
problem. Given a collection of segments and values
m and n, is there a convex set K of measure at most m
such that at least n of the segments can be disjointly
embedded in K. This is closely related to the pack-
ing problems considered here. The decision version
of the maximum-packing problem coincides with the
decision version of the minimum-packaging problem
for a specific region of a given area.
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